Sains Malaysiana 54(1)(2025):
225-242
http://doi.org/10.17576/jsm-2025-5401-18
Sequestration of
Doxycycline and Mefenamic Acid from Liquid Phase Using 1,3-Diaminopropane
Modified Poly(Acrylonitrile-Acrylic Acid): Isotherm, Kinetic and Mechanism
Studies
(Penyerapan Doksisiklin dan Asid Mefenamik
daripada Fasa Cecair Menggunakan 1,3-Diaminopropane Poli(Akrilonitril
Asid-Akrilik) Terubah Suai: Kajian Isoterma, Kinetik dan Mekanisme)
FATIMAH
LEE1, SITI NURUL AIN MD JAMIL1,2,*, NUR NIDA SYAMIMI
SUBRI1, ABEL ADEKANMI ADEYI3,4 & RUSLI DAIK5,6
1Department of Chemistry, Faculty of
Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Centre for Foundation Studies in Science of Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Department of Chemical and Petroleum Engineering, College of
Engineering, Afe Babalola Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti 360211, Ekiti
State, Nigeria
5Department of Chemical Sciences, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
6Institute of Microengineering and Nanoelectronics, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 20
August 2024/Accepted: 30 October 2024
Abstract
Accumulation
of pharmaceutical residues in aquatic environment due to daily consumption by
humans and animals for diseases treatment results in alarming long-term
effects. This study evaluates the adsorption potential of a polymer-based
adsorbent, 1,3-diaminopropane-modified poly(acrylonitrile-acrylic acid)
(DAP-poly(ACN/AA)), for the uptake of doxycycline (DOX) and mefenamic acid
(MEFA) from aqueous solution. The chemical modification of poly(ACN/AA)
copolymer with DAP was successful as suggested by the FTIR spectra and
microanalysis results. The SEM analysis showed that the modified copolymer has
larger particle size, which was 156 nm as compared to that of poly(ACN/AA)
copolymer (133 nm). The influence of adsorbent dosage, contact time, pH and
initial concentration on the adsorption of DOX and MEFA compounds were
investigated. The kinetic studies of DOX and MEFA was fitted well to
pseudo-second-order model with chemisorption being the rate-controlling step.
The equilibrium isotherm has its fitness in the following order: Langmuir model
> Freundlich model > Temkin model. The maximum adsorption capacities for
DOX and MEFA were 210.4 mg/g and 313.7 mg/g, respectively. The excellent high
sorption capacity suggest that DAP-modified poly(ACN/AA) copolymer is a
potential adsorbent for the treatment of DOX and MEFA bearing effluent in
adsorption system.
Keywords:
Copolymer; doxycycline; isotherm; kinetic pharmaceutical; mefenamic acid;
poly(acrylonitrile-co-acrylic acid)
Abstrak
Pengumpulan
sisa farmaseutikal dalam persekitaran akuatik akibat penggunaan harian oleh
manusia dan haiwan untuk rawatan penyakit mengakibatkan kesan jangka panjang
yang membimbangkan. Kajian ini menilai potensi penjerapan bahan penjerap
berasaskan polimer, 1,3-diaminopropan-terubahsuai poli(akrilonitril-asid
akrilik) (DAP-poli(ACN/AA)) untuk mengeluarkan doksisiklin (DOX) dan asid
mefenamik (MEFA) daripada larutan akueus. Pengubahsuaian kimia kopolimer
poli(ACN/AA) dengan DAP berjaya seperti mana dicadangkan daripada spektra FT-IR
dan keputusan analisis-mikro. Analisis SEM menunjukkan bahawa kopolimer yang
diubah suai mempunyai saiz zarah yang lebih besar, iaitu 156 nm berbanding
dengan kopolimer poli(ACN/AA) (133 nm). Pengaruh dos penjerap, masa sentuhan,
pH dan kepekatan awal ke atas penjerapan sebatian DOX dan MEFA telah dikaji.
Kajian kinetik DOX dan MEFA telah dipadankan dengan baik pada model pseudo-tertib-kedua
dengan penjerapan kimia sebagai langkah mengawal kadar. Isoterma keseimbangan
mempunyai kesesuaiannya dalam susunan berikut: Model Langmuir > Model
Freundlich > Model Temkin. Kapasiti penjerapan maksimum untuk DOX dan MEFA
masing-masing ialah 210.4 mg/g dan 313.7 mg/g. Kapasiti penjerapan tinggi yang
sangat baik menunjukkan bahawa kopolimer poli(ACN/AA) diubah suai DAP ialah
penjerap yang berpotensi untuk rawatan efluen yang mengandungi DOX dan MEFA
dalam sistem penjerapan.
Kata kunci: Asid
mefenamik; doksisiklina; isoterma; kinetik farmaseutikal; kopolimer;
poli(akrilonitril-ko-asid akrilik)
REFERENCES
Abu Rumman, G., Al-Musawi, T.J., Sillanpaa,
M. & Balarak, D. 2021. Adsorption performance of an amine-functionalized
MCM–41 mesoporous silica nanoparticle system for ciprofloxacin removal. Environmental
Nanotechnology, Monitoring and Management 16: 100536.
https://doi.org/10.1016/j.enmm.2021.100536
Adeyi, A.A., Jamil, S.N.A.M., Abdullah,
L.C. & Choong, T.S.Y. 2019. Adsorption of malachite green dye from liquid
phase using hydrophilic thiourea-modified poly(acrylonitrile-co-acrylic
acid): Kinetic and isotherm studies. Journal of Chemistry 2019: 4321475.
https://doi.org/10.1155/2019/4321475
Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo,
W., Johir, M.A.H. & Sornalingam, K. 2017. Single and competitive sorption
properties and mechanism of functionalized biochar for removing sulfonamide
antibiotics from water. Chemical Engineering Journal 311: 348-358.
https://doi.org/10.1016/j.cej.2016.11.106
Ajenifuja, E., Ajao, J.A. & Ajayi,
E.O.B. 2017. Equilibrium adsorption isotherm studies of Cu (II) and Co (II) in
high concentration aqueous solutions on Ag-TiO2-modified kaolinite
ceramic adsorbents. Applied Water Science 7(5): 2279-2286.
https://doi.org/10.1007/s13201-016-0403-6
Al-Ameer, L., Hashim, K.K. & Taha, D.N.
2022. Determination of mefenamic acid in aqueous solutions using merging zone -
continuous flow injection. Water Practice and Technology 17(9):
1881-1892. https://doi.org/10.2166/wpt.2022.096
Al-Odaini, N.A., Zakaria, M.P., Yaziz,
M.I., Surif, S. & Abdulghani, M. 2013. The occurrence of human
pharmaceuticals in wastewater effluents and surface water of Langat River and
its tributaries, Malaysia. International Journal of Environmental Analytical
Chemistry 93(3): 245-264. https://doi.org/10.1080/03067319.2011.592949
Banipal, T.S., Kaur, H. & Banipal, P.K.
2017. Studies on the binding ability of diclofenac sodium to cationic
surfactants micelles in aqueous ethanol solutions: Calorimetric, spectroscopic,
and light scattering approach. Journal of Thermal Analysis and Calorimetry 128(1): 501-511. https://doi.org/10.1007/s10973-016-5889-5
Deng, F., Luo, X-B., Ding, L. & Luo,
S-L. 2019. Application of nanomaterials and nanotechnology in the reutilization
of metal ion from wastewater. In Nanomaterials for the Removal of Pollutants
and Resource Reutilization, edited by Luo, X. & Deng, F. Elsevier. pp.
149-178. https://doi.org/10.1016/B978-0-12-814837-2.00005-6
Dolatabadi, M., Ahmadzadeh, S. &
Ghaneian, M.T. 2020. Mineralization of mefenamic acid from hospital wastewater
using electro-Fenton degradation: Optimization and identification of removal
mechanism issues. Environmental Progress and Sustainable Energy 39(3):
e13380. https://doi.org/10.1002/ep.13380
Eniola, J.O., Kumar, R., Barakat, M.A.
& Rashid, J. 2022. A review on conventional and advanced hybrid
technologies for pharmaceutical wastewater treatment. Journal of Cleaner
Production 356: 131826. https://doi.org/10.1016/j.jclepro.2022.131826
Gao, F. 2019. An overview of
surface‐functionalized magnetic nanoparticles: Preparation and
application for wastewater treatment. ChemistrySelect 4(22): 6805-6811.
https://doi.org/10.1002/slct.201900701
Ghaemi, M. & Absalan, G. 2015. Fast
removal and determination of doxycycline in water samples and honey by Fe3O4 magnetic nanoparticles. Journal of the Iranian Chemical Society 12: 1-7.
https://doi.org/10.1007/s13738-014-0450-6
Habila, M.A., Moshab, M.S., El-Toni, A.M.,
ALOthman, Z.A. & Badjah Hadj Ahmed, A.Y. 2023. Thermal fabrication of
magnetic Fe3O4 (nanoparticle)@carbon sheets from waste
resources for the adsorption of dyes: Kinetic, equilibrium, and UV–visible
spectroscopy investigations. Nanomaterials 13(7): 1266. https://doi.org/10.3390/nano13071266
Hanafiah, Z.M., Bithi,
A.S., Mohtar, W.H.M.W., Zin, W.Z.W., Tahrim, N.A., Manan, T.S.A., Rohani, R.
& Indarto, A. 2024. Pharmaceutical footprint in domestic wastewater: Case
study in Malaysia. Water, Air, & Soil Pollution 235: 51. https://doi.org/10.1007/s11270-023-06844-1
Hassan, M.M. &
Hawkyard, C.J. 2007. Decolorisation of effluent with ozone and re-use of spent
dyebath. In Environmental Aspects of Textile Dyeing, edited by Christie,
R. Elsevier. pp. 149-190. https://doi.org/10.1533/9781845693091.149
Hua, Y., Yao, Q., Lin,
J., Li, X. & Yang, Y. 2022. Comprehensive survey and health risk assessment
of antibiotic residues in freshwater fish in southeast China. Journal of
Food Composition and Analysis 114: 104821. https://doi.org/10.1016/j.jfca.2022.104821
Husien, S., El-Taweel,
R.M., Salim, A.I., Fahim, I.S., Said, L.A. & Radwan, A.G. 2022. Review of
activated carbon adsorbent material for textile dyes removal: Preparation, and
modelling. Current Research in Green and Sustainable Chemistry 5:
100325. https://doi.org/10.1016/j.crgsc.2022.100325
Ismar, E. & Sarac,
A.S. 2016. Synthesis and characterization of poly
(acrylonitrile‐co‐acrylic acid) as precursor of carbon nanofibers. Polymers
for Advanced Technologies 27(10): 1383-1388. https://doi.org/10.1002/pat.3807
Jamil, S., Daik, R. &
Ahmad, I. 2014. Synthesis and thermal properties of acrylonitrile/butyl
acrylate/fumaronitrile and acrylonitrile/ethyl hexyl acrylate/fumaronitrile
terpolymers as a potential precursor for carbon fiber. Materials 7(9):
6207-6223. https://doi.org/10.3390/ma7096207
Lai, E.C., Shin, J.,
Kubota, K., Man, K.K.C., Park, B.J., Pratt, N., Roughead, E.E., Wong, I.C.K.,
Kao Yang, Y. & Setoguchi, S. 2018. Comparative safety of NSAIDs for
gastrointestinal events in Asia‐Pacific populations: A
multi‐database, international cohort study. Pharmacoepidemiology and
Drug Safety 27(11): 1223-1230. https://doi.org/10.1002/pds.4663
Malaysian Health
Technology Assessment Section. 2022. Putrajaya: Ministry of Health Malaysia.
https://hq.moh.gov.my/medicaldev/cawangan-penilaian-teknologi-kesihatan/
McMurry, J.E. 2023. Organic
Chemistry: A Tenth Edition. OpenStax.
Mohamad, Z.A., Md Jamil,
S.N.A., Subri, N.N.S., Ismail, F.S. & Daik, R. 2023. Adsorption of
diclofenac from aqueous solution by amine-functionalized poly
(acrylonitrile-co-acrylic acid) microparticles adsorbent. Sains Malaysiana 52(11): 3189-3209. https://doi.org/10.17576/jsm-2023-5211-13
Mohd Hanafiah, Z., Wan
Mohtar, W.H.M., Abd Manan, T.S., Bachi, N.A., Abu Tahrim, N., Abd Hamid, H.H.,
Ghanim, A., Ahmad, A., Wan Rasdi, N. & Abdul Aziz, H. 2023. Determination
and risk assessment of pharmaceutical residues in the urban water cycle in
Selangor Darul Ehsan, Malaysia. PeerJ 11: e14719.
https://doi.org/10.7717/peerj.14719
Mosoarca, G., Vancea, C.,
Popa, S., Gheju, M. & Boran, S. 2020. Syringa vulgaris leaves powder
a novel low-cost adsorbent for methylene blue removal: Isotherms, kinetics,
thermodynamic and optimization by Taguchi method. Scientific Reports 10:
17676. https://doi.org/10.1038/s41598-020-74819-x
Mudhoo, A., Bhatnagar,
A., Rantalankila, M., Srivastava, V. & Sillanpää, M. 2019. Endosulfan
removal through bioremediation, photocatalytic degradation, adsorption and
membrane separation processes: A review. Chemical Engineering Journal 360: 912-928. https://doi.org/10.1016/j.cej.2018.12.055
Nandiyanto, A.B.D.,
Ragadhita, R. & Fiandini, M. 2023. Interpretation of Fourier transform
infrared spectra (FTIR): A practical approach in the polymer/plastic thermal
decomposition. Indonesian Journal of Science and Technology 8(1):
113-126. https://doi.org/10.17509/ijost.v8i1.53297
Newberry, R.W. &
Raines, R.T. 2017. The n→π∗ interaction. Accounts of Chemical Research 50(8):
1838-1846. https://doi.org/10.1021/acs.accounts.7b00121
Olusegun, S.J. &
Mohallem, N.D.S. 2019. Insight into the adsorption of doxycycline hydrochloride
on different thermally treated hierarchical CoFe2Od/bio-silica
nanocomposite. Journal of Environmental Chemical Engineering 7(6):
103442. https://doi.org/10.1016/j.jece.2019.103442
Panic, V., Seslija, S.,
Nesic, A. & Velickovic, S. 2013. Adsorption of azo dyes on polymer materials. Hemijska Industrija 67(6): 881-900.
https://doi.org/10.2298/HEMIND121203020P
Perumal, M.K.K., Gandhi,
D., Renuka, R.R., Lakshminarayanan, A., Thiyagarajulu, N. & Kamaraj, C.
2024. Advanced nano-based adsorbents for purification of pharmaceutical residue
polluted water: A critical review. Process Safety and Environmental
Protection 186: 552-565. https://doi.org/10.1016/j.psep.2024.04.011
Pourhakkak, P.,
Taghizadeh, A., Taghizadeh, M., Ghaedi, M. & Haghdoust, S. 2021.
Fundamentals of adsorption technology. Interface Science and Technology 33: 1-70. https://doi.org/10.1016/B978-0-12-818805-7.00001-1
Qiu, B., Shao, Q., Shi,
J., Yang, C. & Chu, H. 2022. Application of biochar for the adsorption of
organic pollutants from wastewater: Modification strategies, mechanisms and
challenges. Separation and Purification Technology 300: 121925.
https://doi.org/10.1016/j.seppur.2022.121925
Rahimi, K., Riahi, S.,
Abbasi, M. & Fakhroueian, Z. 2019. Modification of multi-walled carbon
nanotubes by 1,3-diaminopropane to increase CO2 adsorption capacity. Journal of Environmental Management 242: 81-89.
https://doi.org/10.1016/j.jenvman.2019.04.036
Rapeia, N.S.M., Jamil,
S.N.A.M., Abdullah, L.C., Mobarekeh, M.N., Yaw, T.C.S., Huey, S.J. & Zahri,
N.A.M. 2014. Preparation and characterization of hydrazine-modified
poly(acrylonitrile-co-acrylic acid). Journal of Engineering Science and
Technology Special Issue on SOMCHE 2014 & RSCE 2014 Conference.
pp. 61-70.
Ren, Q., Ma, Y., Wei, F.,
Qin, L., Chen, H., Liang, Z. & Wang, S. 2023. Preparation of Zr-MOFs for
the adsorption of doxycycline hydrochloride from wastewater. Green
Processing and Synthesis 12(1): 20228127.
https://doi.org/10.1515/gps-2022-8127
Saber, S.E., Abdullah, L.C., Md. Jamil,
S.N.A., Choong, T.S.Y. & Ting, T.M. 2021. Trimethylamine functionalized
radiation-induced grafted polyamide 6 fibers for p-nitrophenol adsorption. Scientific
Reports 11: 19573. https://doi.org/10.1038/s41598-021-97397-y
Samal, K., Mahapatra, S. & Hibzur Ali,
M. 2022. Pharmaceutical wastewater as emerging contaminants (EC): Treatment
technologies, impact on environment and human health. Energy Nexus 6:
100076. https://doi.org/10.1016/j.nexus.2022.100076
Santos, D., Costa, F., Franceschi, E.,
Santos, A., Dariva, C. & Mattedi, S. 2014. Synthesis and physico-chemical
properties of two protic ionic liquids based on stearate anion. Fluid Phase
Equilibria 376: 132-140. https://doi.org/10.1016/j.fluid.2014.05.043
Savadi, P., Lotfipour, F., McMillan,
N.A.J., Hashemzadeh, N. & Hallaj-Nezhadi, S. 2022. Passive and pH-gradient
loading of doxycycline into nanoliposomes using modified freeze-drying of a
monophase solution method for enhanced antibacterial activity. Chemical
Papers 76(5): 3097-3108. https://doi.org/10.1007/s11696-021-02036-5
Shen, T., Han, T., Zhao, Q., Ding, F., Mao,
S. & Gao, M. 2022. Efficient removal of mefenamic acid and ibuprofen on
organo-Vts with a quinoline-containing gemini surfactant: Adsorption studies
and model calculations. Chemosphere 295: 133846
https://doi.org/10.1016/j.chemosphere.2022.133846
Slavov, D., Tomaszewska, E., Grobelny, J.,
Drenchev, N., Karashanova, D., Peshev, Z. & Bliznakova, I. 2024. FTIR
spectroscopy revealed nonplanar conformers, chain order, and packaging density
in diOctadecylamine- and octadecylamine-passivated gold nanoparticles. Journal
of Molecular Structure 1314: 138827.
https://doi.org/10.1016/j.molstruc.2024.138827
Sruthi, P.R. & Anas, S. 2020. An
overview of synthetic modification of nitrile group in polymers and
applications. Journal of Polymer Science 58(8): 1039-1061.
https://doi.org/10.1002/pol.20190190
Subri, N.N.S., Cormack, P.A.G., Siti Nurul,
S.N.A., Abdullah, L.C. & Daik, R. 2018. Synthesis of
poly(acrylonitrile-co-divinylbenzene-co-vinylbenzyl chloride)-derived
hypercrosslinked polymer microspheres and a preliminary evaluation of their
potential for the solid-phase capture of pharmaceuticals. Journal of Applied
Polymer Science 135(2): 45677. https://doi.org/10.1002/app.45677
Thiang, E.L., Lee, C.W., Takada, H., Seki,
K., Takei, A., Suzuki, S., Wang, A. & Bong, C.W. 2021. Antibiotic residues
from aquaculture farms and their ecological risks in Southeast Asia: A case
study from Malaysia. Ecosystem Health and Sustainability 7(1): 1926337.
https://doi.org/10.1080/20964129.2021.1926337
Wang, J. & Guo, X. 2020. Adsorption
kinetic models: Physical meanings, applications, and solving methods. Journal
of Hazardous Materials 390: 122156.
https://doi.org/10.1016/j.jhazmat.2020.122156
Wei, J., Liu, Y., Li, J., Zhu, Y., Yu, H.
& Peng, Y. 2019. Adsorption and co-adsorption of tetracycline and
doxycycline by one-step synthesized iron loaded sludge biochar. Chemosphere 236: 124254. https://doi.org/10.1016/j.chemosphere.2019.06.224
Wei, X., Wang, Y., Chen, J., Xu, F., Liu, Z.,
He, X., Li, H. & Zhou, Y. 2020. Adsorption of pharmaceuticals and personal
care products by deep eutectic solvents-regulated magnetic metal-organic
framework adsorbents: Performance and mechanism. Chemical Engineering
Journal 392: 124808. https://doi.org/10.1016/j.cej.2020.124808
World Health Organization (WHO). 2023. Antimicrobial
Resistance. Geneva: World Health Organization.
Yadav, S., Shah, A. & Malhotra, P.
2024. Orange peel-derived Cu2O/RGO nanocomposite: Mesoporous binary
system for degradation of doxycycline in water. Environment, Development and
Sustainability 26(2): 4505-4532. https://doi.org/10.1007/s10668-022-02895-2
Yadav, K., Latelwar, S.R., Datta, D. &
Jana, B. 2023. Efficient removal of MB dye using litchi leaves powder
adsorbent: Isotherm and kinetic studies. Journal of the Indian Chemical
Society 100(4): 100974. https://doi.org/10.1016/j.jics.2023.100974
Zahoor, M., Wahab, M., Salman, S.M.,
Sohail, A., Ali, E.A. & Ullah, R. 2022. Removal of doxycycline from water
using Dalbergia sissoo waste biomass based activated carbon and magnetic
oxide/activated bioinorganic nanocomposite in batch adsorption and
adsorption/membrane hybrid processes. Bioinorganic Chemistry and
Applications 2022: 2694487. https://doi.org/10.1155/2022/2694487
Zahri, N.A.M., Jamil, S.N.A.M., Abdullah,
L.C., Yaw, T.C.S., Mobarekeh, M.N., Huey, S.J. & Rapeia, N.S.M. 2015.
Improved method for preparation of amidoxime modified
poly(acrylonitrile-co-acrylic acid): Characterizations and adsorption case
study. Polymers 7(7): 1205-1220. https://doi.org/10.3390/polym7071205
*Corresponding author; email:
ctnurulain@upm.edu.my